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Abstract

Economists often use balance tests to demonstrate that the treatment and control
groups are comparable prior to an intervention. We show that typical implementa-
tions of balance tests have poor statistical properties. Pairwise t-tests leave it unclear
how many rejections indicate overall imbalance. Omnibus tests of joint orthogonal-
ity, in which the treatment is regressed on all the baseline covariates, address this
ambiguity but substantially over-reject the null hypothesis using the sampling-based
p-values that are typical in the literature. This problem is exacerbated when the
number of covariates is high compared to the number of observations. We examine
the performance of alternative tests, and show that omnibus F -tests of joint orthog-
onality with randomization inference p-values have the correct size and reasonable
power. We apply these tests to data from two prominent recent articles, where stan-
dard F -tests indicate imbalance, and show that the study arms are actually balanced
when appropriate tests are used.
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1 Introduction

Balance tests are often used to demonstrate that treatment and control groups are com-

parable before treatment. Based on a review of all papers published in top five journals in

economics between 2021 and 2023, we identified 69 randomized controlled trials (RCTs),

out of which 62 (90%) discuss the results of balance tests (Table A.1 in Appendix).

Balance tests play a crucial role in establishing the comparability of the treatment

and control groups in randomized controlled trials (RCTs) prior to any intervention.

This is particularly important in RCTs where the randomization may not have actually

been implemented correctly—for example, in situations where the research team lacks full

control over the randomization process such as public lotteries (e.g. Kerwin and Thornton

2021, Gazeaud, Mvukiyehe, and Sterck 2023). Balance tests are especially relevant when

administrators may have incentives to manipulate the allocation process. Even in RCTs

in which the research team is in charge of randomization, balance tests may be useful to

demonstrate that randomization did not result in an unlucky draw, which can skew the

results of the study (Leamer 1983).1 Some scholars have argued in favor of re-randomizing

if balance tests identify serious imbalances (Bruhn and McKenzie 2009) although this can

lead to complications for inference (Athey and Imbens 2017). Balance tests also play an

essential role in the analysis of natural experiments, to demonstrate that compared groups

are similar before the quasi-random intervention or shock (Siu, Sterck, and Rodgers 2023).

Economists tend to use two methods to assess balance, often together. First, 82% of

the papers we reviewed use pairwise t-tests (or groupwise F -tests if there are more than two

study arms) with a series of baseline variables and argue that treatment and control groups

are balanced if few tests reject the null hypotheses at conventional thresholds. Normalized

differences are sometimes reported alongside t-tests to show that any differences are small

in size. Second, 32% of papers use omnibus tests of joint orthogonality, in which the

treatment dummy is regressed on the full list of baseline covariates, and conclude that

experimental groups are balanced if the test statistic is below a conventional significance

threshold. Most papers reporting the p-value of an omnibus F -test of joint orthogonality
1See Mutz, Pemantle, and Pham (2019) for arguments against this practice.
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use an OLS regression with robust standard errors to address heteroskedasticity in the

linear probability model (LPM), or cluster-robust standard errors to account for clustered

randomization.

In this paper, we use simulations to show that both of these approaches have poor

statistical properties in term of size and power. Simple pairwise or groupwise t-tests

and F -tests for individual variables pose different statistical challenges. With pairwise

or groupwise t-tests, it is unclear how many rejections should lead to the conclusion that

there is a balance problem or a randomization failure. Authors are left to subjectively

assess whether an excessive number of tests have been rejected or whether one or more t-

statistics are unreasonably large. One approach that is sometimes used is “vote counting”,

in which authors conclude that there is imbalance if e.g. more than 10 percent of tests

reject the null at the 10% level. This approach is known to have low power in meta-

analyses (Hedges and Olkin 1980). We show that it also has incorrect size: it rejects the

null at very high rates. This happens because the fraction of p-values below 0.10 is itself

a random variable. Even for independent tests with the correct size it is centered at 10%

under the null, and so is greater than 10% nearly half the time.2

The omnibus tests of joint orthogonality typically deployed in the literature, which

use sampling-based inference, have the incorrect size: they substantially over-reject the

null hypothesis. This problem is worst when many baseline variables are included in

the test and when heteroskedasticity-robust standard errors are used. This over-rejection

of the null means that omnibus tests of joint orthogonality wrongly indicate imbalance

issues where none are present. The over-rejection problem is very large under realistic

conditions. For example, with 500 observations and 50 covariates that are independent

and normally distributed, robust omnibus F -tests of joint orthogonality reject the null

hypotheses at α = 0.10 approximately 50% of the time, instead of the expected 10%.

We propose and compare three alternative methods to assess balance: (1) an om-

nibus F -test of joint orthogonality with randomization inference p-values, (2) the mini-

mum sharpened q-value to adjust p-values from pairwise t-tests and thereby control the
2Asymptotically it exceeds 10% exactly half of the time. For datasets with finite samples, some

fraction have a rejection rate of exactly 10%.
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false discovery rate (Benjamini, Krieger, and Yekutieli 2006; Anderson 2008), and (3) a

Kolmogorov–Smirnov test to assess whether p-values from pairwise t-tests are uniformly

distributed. We compare the performance of these methods in terms of statistical size and

power using simulations. We conclude that omnibus F -tests of joint orthogonality with

randomization inference p-values exhibit excellent performance in terms of both statistical

power and size, for both individual and cluster RCTs. Randomization inference is also the

conceptually correct method for calculating F -test p-values for balance tests in RCTs, as

the uncertainty comes from the randomization process and not from sampling variation

(Abadie et al. 2020). In individually randomized designs, the minimum sharpened q-value

from pairwise t-tests also performs well, providing the best statistical power to detect few

large imbalances (even though it is conservative in terms of empirical size). The other

approaches we test have problems with size or statistical power, especially for clustered

RCTs.

We therefore recommend assessing balance using omnibus F -tests of joint orthogo-

nality with randomization inference as this method is more reliable and flexible with

different datasets, and it offers a more intuitive justification than alternative methods.

This method can be complemented with the minimum sharpened q-value from pairwise

t-tests if treatment is randomized at the individual level. We discuss how to implement

these tests with multiple treatments as well.

To illustrate the value of our research, we re-assess the balance of two RCTs whose

results were recently published in top-five journals (Garbiras-Díaz and Montenegro 2022,

Auriol et al. 2020). With pairwise t-tests and vote counting, 6% and 17% of tests are

rejected at the 10% level in Garbiras-Díaz and Montenegro (2022) and Auriol et al. (2020)

respectively, suggesting possible balance issues in the latter RCT. If we use typical om-

nibus F -tests of joint orthogonality with sampling-based inference, we reject the null

of overall balance for some treatments in both papers. However, we find no significant

balance issues in either paper when using an appropriate omnibus F -test of joint orthog-

onality with randomization inference. These findings strengthen the internal validity of

the two papers in question. They also have broader implications for the RCT literature:
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while these two studies were not selected randomly, they are representative of the issues

that affect balance tests in RCTs: 82% of recent randomized trials published in top five

journals used pairwise t-tests or groupwise F -tests and vote counting and 32% used om-

nibus tests of joint orthogonality, and 100% of omnibus tests relied on sampling-based

inference.

This paper contributes to three strands of the literature in empirical research in social

science. First, it adds to existing work on the use of balance tests in randomized controlled

trials. Senn (1994) prominently argued that balance tests should not be used at all;

based on his work, using statistical tests to conclude that there are balance problems is

commonly referred to as the “Table 1 fallacy”, particularly in health research (e.g. Sherry

et al. 2023). In social science, however, balance tests are more widely supported. Leamer

(1983) points out that unlucky draws in randomized trials can lead to exactly the same

treatment assignments as would happen outside of an experiment, leading to the same

concerns about a particular study’s results being incorrect. Unbiasedness guarantees that

those errors will cancel out on average, but offers no such promises about the results of

any specific random assignment. In a similar vein, Eckles (2021) argues that balance

tests are important for verifying that the randomization actually took place. Imperfect

randomization and failure to comply with treatment assignment are common in social

science RCTs.3 Our results help to clarify how to test for aggregate balance problems

of the sort emphasized by Eckles. An individual t-test or comparison of standardized

differences is sufficient for seeing whether there is imbalance on a specific variable, as in

Leamer. To know whether the randomization protocol may have been violated, however,

overall balance tests are needed.

We extend this literature by comparing the performance of various tests for both

individually randomized and clustered designs, considering a wide range of sample sizes

and number of covariates, and assess both the statistical size and power of the tests.

We also build on work that uses randomization inference for testing overall balance.

Hansen and Bowers (2008) develop an overall balance test and show that it performs well
3For example, in the Perry Preschool program, some children were reassigned to different treatment

statuses (Heckman, Pinto, and Shaikh 2024).
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when p-values are constructed using randomization inference. Their test is uncommon

in economics. We show that the sampling inference-based F -tests that most economics

papers actually use over-reject the null, but have the correct size and high power when

randomization inference is used instead

Second, our paper contributes to the literature on methods for the design and anal-

ysis of randomized trials. Bruhn and McKenzie (2009) use simulations to show how to

optimize balance in the design of RCTs and how to analyze the data conditional on spe-

cific designs, and Athey and Imbens (2017) provide an overall guide to the analysis of

data from randomized experiments. Abadie et al. (2020) discuss how to correctly conduct

inference for data-generating processes like RCTs where the uncertainty comes from the

assignment process rather than random sampling. A related line of work discusses the

value of pre-specifying one’s plan for analyzing the data from RCTs ahead of time (Casey,

Glennerster, and Miguel 2012). We build on this body of work by providing specific guid-

ance on how to conduct tests for overall balance. Omnibus tests of joint orthogonality

have been used in applied research for some time, and is suggested by McKenzie (2015).

But there is no existing evidence on how to do inference on the F -statistics from this test.

We show, in line with Abadie et al., that the p-values for these omnibus F -tests of joint

orthogonality should properly be constructed using randomization inference.

Third, we contribute to an extensive body of research on the validity of empirical

work in economics. Brodeur et al. (2016) find that there is substantial “missing mass” in

the distribution of test statistics, suggesting that researchers are engaging in p-hacking in

the vein of Simmons, Nelson, and Simonsohn (2011). Eble, Boone, and Elbourne (2017)

assess randomized trials in economics by the standards used in medical research, showing

that there is substantial risk of bias in the reporting of economics RCTs. Young (2019)

shows that statistical analyses of data from RCTs over-reject the null hypothesis due to

the inappropriate use of sampling- (rather than design-) based inference. A related line

of work shows that multiple testing problems mean that many RCT results are false pos-

itives (Anderson 2008). In contrast with this previous work, we show that randomized

experiments typically perform better than the literature might suggest: sampling-based
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approaches to inference skew the results toward (incorrectly) rejecting the null. However,

our findings also suggest the possibility of another sort of selective reporting. Since the

standard omnibus test of joint orthogonality rejects the null so often, authors may be

running it but not reporting it. Our suggested alternative approach, which uses random-

ization inference instead, can help head off this issue.

2 Methods to assess test size and power

We use simulations with four different data generating processes (DGP) to assess the size

and power of different omnibus tests of joint orthogonality. We conduct all our simulations

using Stata. Stata code for our simulations is available in the replication package for our

paper.

2.1 Test Size

In statistics, the size of a test refers to the probability of erroneously rejecting the null

hypothesis – in other words, the likelihood of committing a Type I error. Scholars dis-

tinguish the nominal size of a test, which is the threshold set by the researcher for the

maximum allowable probability of a Type I error, from its empirical size, which is the ac-

tual observed rate of Type I errors when the test is applied to a large number of datasets.

Statisticians typically try to construct tests for which the empirical size is equal to the

nominal size. If the empirical size of a test is less than its nominal size, the test is said

to be more conservative, meaning the actual rate of Type I errors is lower than the pre-

specified level. This is not problematic but may indicate that a more-powerful test is

possible (Fisher and Robbins 2019). However, a statistical test should be avoided if its

empirical size of a test is greater than its nominal size, as this means there is an increased

likelihood of Type I error, i.e. false positives.

In balance tests, the null hypothesis is typically that the study arms have equal means.

If two groups differ only because of random chance,4 then a balance test will have correct
4For example, due to sampling variation or assignment variation, which implies that the means are

equal in expectation but different for any particular realizations of the sampling or randomization process.
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size if its p-values are uniformly distributed, rejecting the null hypothesis at the x percent

level in x percent of realizations. The test is conservative if p-values are skewed to the

left, leading to a reduced risk of Type I error. By contrast, the test size is problematic if

p-values are skewed to the right, leading to an over-rejection of the null hypothesis and

increased likelihood of Type I error.

We consider four DGPs to assess the size of balance tests. The first two DGPs use

simulated data. We consider a simple DGP with N observations, n independent variables

that are normally distributed ∼ N(0, 1),5 and an independent treatment that is randomly

assigned to half of the N observations (DGP 1). We also consider a more complex clus-

tered design, in which the N observations are split into 100 clusters of equal size, the n

variables are correlated within clusters (average intra-class correlation=0.2), and treat-

ment is randomly assigned to half of the clusters (DGP 2). In our benchmark estimates,

we assess test size by generating 500 simulated datasets with N = 500 observations and

n = 50 covariates. To examine how test size varies with the number of regressors and

sample size, we also vary the number of variables n from 10 to 100 and the number of

observations N from 200 to 5000.

The two other DGPs use original datasets from existing randomized controlled trials

but randomly (re-)assign the treatment variable using the same assignment rule as in the

original paper. We selected two papers from our review of recent RCTs published in top

five journals.

These papers were selected intentionally, rather than at random, because we wanted

to explore key features of the DGP that were shown to be problematic in our simulations.

First, we wanted to select one individually randomized trial and one cluster randomized

trial, as the results of our simulations show that balance tests perform differently in these

two types of RCTs. Then, we selected the individually randomized trial of Garbiras-Díaz

and Montenegro (2022), which has a relatively small sample size and large number of co-

variates; our simulations show that this combination exacerbates the spurious imbalance
5As a robustness check, we also considered a DGP with variables that are distributed following

uniform, chi-squared, or binary distributions. Results suggest the distribution of variables has only
minor impact on test size.
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issues with traditional omnibus F -tests of joint orthogonality. We selected the cluster

randomized trial of Auriol et al. (2020) because one of the omnibus F -test of joint orthog-

onality reported in the paper has a p-value below 0.1, and we suspected that this was not

a genuine imbalance problem but rather an issue with the test.

In Garbiras-Díaz and Montenegro (2022), the authors study whether crowdsourcing

the monitoring of elections is effective in combating electoral fraud. The intervention

leverages a Facebook advertisement campaign aimed at encouraging citizens to report

electoral irregularities during the 2019 mayoral elections in Colombia. A total of 698

municipalities (more than half the municipalities in the country) were randomized to

one of three interventions or a placebo control group, resulting in four main study arms.

Citizens in the placebo control group received a basic message reminding them about the

date of the coming elections. For citizens in the “information” study arm, the message

also advertised the website where irregularities can be reported, together with a web link.

Citizens in the “call-to-action” study arm received a message with a call to action to

report irregularities and act against them. Citizens in the “information + call-to-action”

study arm received both the message containing the link to report irregularities as well

as the call to action.6 In our simulations, we randomly re-assign the 698 municipalities

into a “placebo” treatment arm or a control group and use balance tests with 33 baseline

covariates to compare observations in both groups (DGP 3).

Auriol et al. (2020) examine the hypothesis that insurance can be a motive for reli-

gious donations, and that believers give money to churches hoping to receive insurance

against future economic shocks. The authors conduct a two-stage lab-in-the-field exper-

iment where they randomly assign participants to a formal and commercially available

funeral insurance policy. Then, using a dictator game, researchers measure participants’

willingness to contribute money to the church and two other charitable recipients.

Participants were recruited from different branches of a well-established Pentecostal

church and grouped into sessions. Randomization was done at the session level. At
6In order to understand how candidates responded to the reporting campaign, the researchers addi-

tionally cross-randomized whether a candidate for mayor (or any of their staff) received a letter informing
them about the reporting campaign. For simplicity and brevity, we do not consider this additional level
of randomization here.
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the start of each session, one participant per group was invited to pick one out of three

unmarked envelopes to assign the group to the “Insurance”, “Insurance Information” or “No

Insurance” group. The group of participants who received the paper with the insurance

label received a funeral insurance policy offered by a leading micro insurer active in

the Ghanaian market. Groups assigned to the “Insurance Information” received only

information about the insurance policy. All groups were then invited to play the dictator

game. Participants who received the “No Insurance” envelopes were not assigned to the

policy and did not have any sort of discussion about insurance.

In our simulations, we randomly re-assign the clusters into three groups and use bal-

ance tests with 10 covariates to compare observations in two of the groups (DGP 4).

We use the four DGPs to assess the size of balance tests. For each DGP and each

balance test, we generate 500 datasets and run the test separately in each dataset. We

then estimate the cumulative distribution of p-values, i.e. the proportion of p-values

(out of 500) that are below a threshold t, for t ranging from 0 to 1 in steps of 0.01.

By construction, the treatment indicators are independent from the baseline covariates.

Therefore, the balance tests have the correct size if p-values are uniformly distributed on

[0,1], implying that the cumulative distribution of p-values is aligned with the 45 degree

line. In contrast, balance tests over-reject the null hypothesis if the distribution of p-

values is skewed to the right and the cumulative distribution of p-values is above the 45

degree line for p-values below critical thresholds, and under-reject the null hypothesis if

the opposite holds. When interpreting the results of simulations, we will often consider

DGPs 1 and 3 together, as they are both individually randomized designs, and DGPs 3

and 4 together, as they are both clustered designs.

2.2 Statistical Power

The power of a test is the probability that the test correctly rejects the null hypothesis

when a specific alternative hypothesis is true. The power of a test is equal to 1−β where

β is the probability of committing a type II error by wrongly failing to reject the null

hypothesis.
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To assess the power of balance tests, we add imbalances to some of the covariates of

DGPs 1 and 2 and estimate how frequently the tests reject the null hypothesis that there

is no imbalance between the treatment and control groups. We use the significance level

of 10%, which is the higher threshold typically reported in economics.

We consider four approaches to generate imbalances of different magnitudes in different

subsets of covariates. First, for one variable only, a very large imbalance is created by

adding 0.25 to treated observations. Second, large imbalances in 10% of variables are

created by adding 0.2 to treated observations. Third, for 20% of variables, medium

imbalances are created by adding 0.15 to treated observations. Finally, small imbalances

are created in 50% of variables by adding 0.1 to treated observations.

We consider simulated datasets with different numbers of observations, letting N rang-

ing between 200 and 5,000. We estimate the proportion of p-values below 0.10. In our

benchmark estimates, we consider simulated datasets with 50 covariates. As a robustness

check, we also assess how statistical power changes when the number of covariates varies

between 10 and 100.

When assessing statistical power, we focus on tests whose empirical sizes are equal

or below their nominal sizes. Indeed, assessing the power of a test is misleading if its

empirical size is above its nominal size, as a higher rate of rejecting the null hypothesis

would likely be caused by more type I errors instead of fewer type II errors. If two balance

tests have empirical size equal or below the nominal size, one should prefer the test with

the highest statistical power to detect imbalance. On the contrary, if two tests have similar

statistical power, one should prefer the test with the lowest empirical size, i.e. the lowest

probability of type I error.

3 Balance tests in economics

To gain insights into how researchers approach balance tests in the economics literature,

we systematically reviewed all papers that appeared when searching for the words “exper-

iment”, “field experiment”, “field-experiment” , “randomized controlled trial”, “randomized
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controlled trials”, “randomised controlled trial”, and “random” in the search engine of each

of the top five journals in economics: the American Economic Review, Econometrica, the

Journal of Political Economy, the Review of Economic Studies, and the Quarterly Journal

of Economics. We also reviewed papers in the American Economic Journal: Applied Eco-

nomics given the journal’s focus on applied research and particularly RCTs. We identified

69 papers that were published between 2021 and 2023 and report original results from a

randomized controlled trial. We analyzed these papers to identify whether and how the

authors conducted balance tests. Our findings are summarized in Table A.1.

We find that 90% of the reviewed papers use balance tests, which we define as tests

assessing the statistical significance or magnitude of the correlation between treatment sta-

tus and a vector of baseline covariates. Our review of the literature shows that economists

employ a variety of balance tests. Pairwise t-tests are reported in 65% of the papers, fol-

lowed by omnibus F -tests or chi-squared tests of joint orthogonality (32%), groupwise

F -tests (26%), and pairwise normalized differences (6.5%).

We investigate the statistical properties of these tests by categorizing them into two

distinct groups based on whether they consider baseline covariates individually or jointly.

Pairwise and groupwise tests examine the association between treatment status and the

different baseline covariates, each considered independently. By contrast, omnibus tests

of joint orthogonality consider the different baseline covariates jointly in a multivariate

regression framework. These two categories of tests yield distinct statistical insights and

challenges.

3.1 Pairwise and groupwise tests

Pairwise t-tests are by far the most-frequently used method to test for balance. Pairwise

t-tests are testing the null hypothesis of equality of means in the treatment and control

groups for each baseline covariate considered separately. t-test difference can also be

estimated by regressing covariates on the treatment status. Regressions give authors

the advantage of controlling for fixed effects and clustering at the randomization level.

When there are more than two treatment arms, pairwise t-tests are sometimes replaced

11



by groupwise F -tests obtained by regressing each baseline covariate on the full vector of

treatment indicators and then testing the joint equality of the coefficient estimates with

zero. Groupwise F -tests should not be confused with omnibus tests of joint orthogonality,

where instead the treatment indicator is regressed on the full vector of baseline covariates;

we discuss these in Section 3.2.

Pairwise t-tests and groupwise F -tests have the same underlying logic: for each vari-

able, they test whether the differences across arms are consistent with what one would

expect from random chance, under the null hypothesis. Among the 69 papers we reviewed,

82% report the results of pairwise t-tests or similar groupwise F -tests.

To complement significance tests, authors sometimes also report pairwise normalized

differences (Imbens and Rubin 2015). This happens in 6.5% of papers . The normalized

difference between study arms is the difference in means divided by the pooled standard

deviation (
√

σ2
C + σ2

T ). This is normally compared against some cutoff value such as 0.15

or 0.25. Large normalized differences suggest imbalances between study arms that are

substantively large compared with the sample variance, which implies that there could be

meaningful bias in estimated treatment effects as well. The value of this approach is that

it avoids failing to reject the null simply because of a small sample.

Pairwise and groupwise balance tests are problematic for three related reasons. First,

there is no clear rule for determining how many rejections of the null in a balance table

constitute a balance problem. Second, this creates additional “researcher degrees of free-

dom” (Simmons, Nelson, and Simonsohn 2011) to present balance tables as showing or

not showing a problem, depending on the authors’ preferences and audience pressures.

Researchers may want to argue that there are no balance problems in order to make it

easier to publish their papers. Conversely, stakeholders with a vested interest in a pro-

gram continuing may wish to sweep inconvenient null results under the rug by claiming

that the randomization had problems. Third, because of the lack of guidance, researchers

sometimes use ad hoc rules of thumb like “vote counting”, in which the balance table indi-

cates an overall balance problem if more than a specific fraction of pairwise tests rejects

the null (Hedges and Olkin 1980).
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We examine the performance of pairwise t-tests and vote counting in Appendix Figure

A.1. For 500 repetitions of DGPs 1 and 2 respectively, we calculate the proportion of t-

tests’ p-values that are below versus above 0.1, as economists doing vote counting typically

use this threshold to conclude that the study arms are balanced.7 We find that vote

counting dramatically over-rejects the null hypothesis that treatment and control groups

are balanced. In 37% of the datasets generated using DGP 1, strictly more than 10% of t-

tests are significant at the 10% level when considering a heteroskedasticity-robust variance

estimator (the percentage is 34% with a variance estimator assuming homoskedasiticty).

For DGP 2, 32% of datasets yield strictly more than 10% of t-tests that are significant at

the 10% level when considering a cluster-robust variance estimator (the percentage is as

high as 64% with a variance estimator assuming homoskedasiticty). These percentages

are much higher than 10%, implying that vote counting – if applied strictly – would

misleadingly lead researchers to over-estimate imbalance problems.

3.2 Omnibus tests of joint orthogonality

Omnibus tests of joint orthogonality aim to address the limitations of pairwise and group-

wise tests by considering baseline covariates jointly in a unique test yielding a unique

statistic. Omnibus tests of joint orthogonality typically involve regressing the treatment

dummy on the vector of baseline covariates and test the null hypothesis that all regres-

sion coefficients are jointly equal to zero. Among the papers we reviewed, 32% report the

results of one or more omnibus tests of joint orthogonality.

Researchers face different options when implementing omnibus tests of joint orthog-

onality in practice, including the choice of methods for estimating regression coefficients

and standard errors. Among papers employing an omnibus balance test, a large major-

ity (86%) report the F -statistic and associated p-value resulting from an Ordinary Least

Squares (OLS) regression. A minority of studies (14%) opted for a chi-squared test re-

sulting from a logit or probit regression, or their multinomial equivalent when there are

more than two treatment arms.
7To implement each t-test, we use the Stata command regress, with the options robust or cluster

when relevant, and record the p-value of the regression coefficient.
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Researchers also need to determine how to do inference on the test statistics to compute

p-values. Among the papers we reviewed, 100% rely on sampling-based inference (we study

randomization inference in Section 4.1). As the dependent variable in omnibus tests of

joint orthogonality is either binary or categorical, heteroskedasticity is an issue when

OLS is used to estimate a linear probability model (LPM). Statistical programs usually

provide different heteroskedasticity-consistent (HC) variance estimators, including the

HC1, HC2, and HC3 estimators (MacKinnon and White 1985).8 Researchers also use

cluster-robust variance estimators when treatment status is assigned at the cluster level.

Among the reviewed papers that use omnibus tests of joint orthogonality, 4.5% used

heteroskedasticity-robust estimators, 59% used cluster-robust estimators, and 27% used

a variance estimator that assumes homoskedasticity.

In Figure 1, we assess the size of omnibus F -tests and chi-squared tests of joint or-

thogonality using sampling-based inference.9 Our key finding is that all versions of the

omnibus tests of joint orthogonality have empirical size above nominal size, rejecting the

null hypothesis too frequently in some or all DGPs. When the DGP does not involve

clustering (DGPs 1 and 3), correct test size is only obtained when the omnibus test is

issued from an OLS regression with a variance estimator that (incorrectly) assumes ho-

moskedasticity. All heteroskedasticity-robust variance estimators dramatically over-reject

the null hypothesis. For instance, under DGP 1, an omnibus F -test of joint orthogonality

resulting from an OLS regression with the robust HC1 variance estimator rejects the null

hypothesis in 50% of samples, instead of the expected 10%. When a clustered design is

considered (DGPs 2 and 4), all omnibus tests of joint orthogonality over-reject the null,

even the one assuming homoskedasticity. The problem remains if cluster-robust standard

errors are used.

8Angrist and Pischke (2008) point out that these estimators can have poor finite-sample performance,
and also that they themselves have a sampling distribution and can be smaller than homoskedastic
standard errors.

9The results using a probit model are very similar to those from the logit and hence are only reported
in the Appendix (Figures A.4 and A.5).
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Figure 1
Size of Omnibus Tests of Joint Orthogonality Using Sampling-based Inference
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(a) DGP 1: 50 independent covariates ∼ N(0,1)
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(b) DGP 2: clustered design
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(c) DGP 3: Garbiras-Díaz and Montenegro (2022)
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(d) DGP 4: Auriol et al. (2020)
Notes: The figures show the cumulative distribution of p-values from omnibus F -tests and chi-squared
tests of joint orthogonality, using sampling-based inference. Each figure focuses on one data generating
process (DGP) and is based on 500 simulated datasets. DGP 1 considers a data generating process with
500 observations, 50 independent variables that are normally distributed ∼N(0,1), and an independent
treatment randomly assigned to half of observations. DGP 2 considers a data generating process with 500
observations split in 100 clusters of equal size, 50 variables that are normally distributed and correlated
within clusters (average coefficient of intra-cluster correlation = 0.2), and an independent treatment
randomly assigned to half of the clusters. The data from Garbiras-Díaz and Montenegro (2022) includes
698 municipalities in Colombia, which are randomly re-assigned to a “placebo” treatment group or a
control group; the tests use 33 baseline covariates and compare observations in the treatment and control
groups. The data from Auriol et al. (2020) includes 1016 observations split in 148 clusters, with clusters
randomly re-assigned to two “placebo” treatment arms and a control group; tests use 10 baseline covariates
and compare observations in one treatment group and the control group. For each test, we estimate the
proportion of p-values (out of 500) that are below a threshold t, for t ranging from 0.01 to 0.99 in steps
of 0.01. We then use a fractional-polynomial prediction line to smooth the results. Figures A.4 and A.5
show how test size vary with the number of covariates and sample size for DGP 1 and DGP 2 respectively.
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These problems are magnified when sample size is smaller and the number of covariates

is larger. Figures A.4 and A.5 in the Appendix represent the proportion of tests that are

rejected at the 10% level for different versions of omnibus tests of joint orthogonality, as

a function of the number of observations and covariates. By construction, 10% of tests

should reject the null if the test size is correct, as the treatment is randomly assigned

and hence independent of the baseline covariates in all four DGPs. Under DGP 1, the

size of omnibus F -tests of joint orthogonality assuming homoskedasticity is correct even

when N is small and the number of covariates is large. The size of the other omnibus

tests is correct only when N is very large (≈ 5000) or when the number of covariates is

low (n < 10), but incorrect when the number of observations is small or moderate and

the number of covariates is larger than 10. The HC2 and HC3 estimators perform no

better, over-rejecting the null at comparable rates to HC1. Under DGP 2 (the clustered

design), test size problems emerge even for large datasets and a relatively small number

of covariates.

Overall, we conclude that the methods currently used by economists to assess covariate

balance are generally inadequate. Pairwise and groupwise tests, while commonly used,

rely on subjective assessments of multiple test results by researchers, introducing a degree

of subjectivity and leaving room for interpretation. Although omnibus tests of joint

orthogonality address these issues, they usually over-reject the null, both for simulated

data and original data from existing RCTs.

4 Alternative methods

We examine three alternative approaches to assess balance: (1) omnibus tests of joint

orthogonality with randomization inference, (2) sharpened q-values to adjust p-values

from pairwise t-tests and thereby control the false discovery rate (Benjamini, Krieger, and

Yekutieli 2006; Anderson 2008), and (3) a Kolmogorov–Smirnov test to assess whether

p-values from pairwise t-tests are uniformly distributed. We first describe the intuition for

these three methods and then examine their properties in terms of test size and statistical
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power.

4.1 Omnibus test of joint orthogonality with randomization in-

ference

Omnibus tests of joint orthogonality can be used with randomization inference instead

of sampling-based inference, as proposed by Hansen and Bowers (2008). Randomization

inference involves comparing the observed test statistic with the theoretical distribution of

the test, which is computed by re-estimating the test statistic for a random sample of all

possible treatment assignment vectors.10 In this paper, we use 500 random reassignments

for each test. The intuition for using this approach is that the uncertainty in random-

ized experiments comes not from sampling variation but from assignment variation—

differences across repetitions of the experiment in terms of which units are assigned to

treatment versus control (Abadie et al. 2020). Since the randomized “treatments” do

nothing, the sharp null hypothesis of a zero treatment effect for all observations is true

by construction. We reject this null hypothesis if the observed test statistic is at the

extreme of the estimated theoretical distribution—for example, beyond the 90th, 95th, or

99th percentile.11

Randomization inference aligns well with the intuition of balance tests, which exam-

ine the uncertainty or variation resulting from the randomization process and not from

sampling. Another positive aspect of randomization inference is that it does not require

specifying a model of the error term, which typically depends on a set of unknown pa-

rameters. This makes randomization inference more robust to certain non-normality or

heteroskedasticity violations (Young 2019).
10The exact theoretical distribution of the test can in theory be obtained by estimating the test statistic

for all possible treatment assignment vectors. However, this is computationally infeasible for all but the
smallest samples.

11We need not consider the lower tail of the probability distribution because F -statistics are weakly
positive by construction.
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4.2 Adjustments for multiple hypothesis testing

Pairwise t-tests and groupwise F -tests are problematic because multiple tests are used

to test one hypothesis, which is that the treatment arms are balanced. This issue could

in principle be addressed using methods that adjust p-values to account for multiple

hypothesis testing.

Two main approaches to address multiple hypothesis testing have been proposed in the

literature (Anderson 2008). A first group of corrections aim to control for the Familywise

Error Rate (FWER), which is the probability of making at least one type I error among

all the hypotheses being tested. The goal is to control this probability at a desired

significance level. The second group of corrections aim to control for the False Discovery

Rate (FDR), which the expected proportion of false discoveries (type I errors) among the

rejected hypotheses. If all null hypotheses are true, then FWER and FDR are equivalent

(Anderson 2008, p. 1487). This equivalence is important as, with pairwise t-tests and

groupwise F -tests and balance tests more generally, null hypotheses are expected to be

true.

Both FWER and FDR corrections can therefore be considered in the context of balance

tests. In Appendix Figures A.2 and A.3, we compare Romano-Wolf stepdown p-values

(Romano and Wolf 2005; Clarke, Romano, and Wolf 2020), which control the FWER,

and sharpened q-values, which control the FDR (Anderson 2008). The figures show

that both categories of corrections have similar statistical size and power for individually

randomized designs (DGPs 1 and 3) but only the FDR correction has an empirical test size

below its nominal size for clustered designs (DGPs 2 and 4), while the FWER correction

substantially over-rejects the null.

In what follows, we therefore focus on sharpened q-values, which control the FDR.

Controlling the FDR at level q implies imposing that the proportion of type I errors is

below q. The basic method for this approach, from Benjamini and Hochberg (1995), is

the following. Select a critical value for the test pcrit. Sort the p-values in increasing order

and count them; call the total number M . Each has a rank, r, from 1 (the smallest)

to M (the largest). Then, starting from the largest p-value, we test each one against
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pcrit × (r/M). So if there are 10 p-values then the largest is tested against 0.10, the

second-largest against 0.09, and so forth. We stop when we get to the first rejection and

reject all tests with smaller p-values.

The approach we use augments this method in three ways. First, we “sharpen” qcrit

to improve statistical power while still controlling the FDR at the same rate, following

Benjamini, Krieger, and Yekutieli (2006). Second, we use Anderson (2008)’s approach to

compute not just whether a test was rejected at the qcrit level but the smallest qcrit for

which the test would be rejected, which can be interpreted in the same way as a standard

p-value.12 Third, we use the minimum of all the sharpened q-values as a test for overall

balance. When we apply the q-value procedure to the p-values of M pairwise t-tests, we

obtain M test statistics. While this helps determine which variables are imbalanced, it

does not provide a unique determination of whether there is overall imbalance. We do

this by rejecting the null hypothesis that treatment arms are balanced if the minimum

sharpened q-value is below a conventional significance threshold (usually 0.1 in economics).

This is equivalent to rejecting the null if any q-value is less than the threshold.

4.3 Kolmogorov–Smirnov test

If a treatment is randomly assigned, then the p-values of pairwise t-tests should be uni-

formly distributed. This can be tested using a Kolmogorov–Smirnov (K–S) test, which is

nonparametric statistical test that can be used to compare a sample distribution with a

known reference distribution.

In the context of balance tests, the null hypothesis of the K-S test is that the sample

of p-values from pairwise t-tests comes from a uniform distribution. The K–S statistic

quantifies the maximum vertical distance between the empirical distribution of p-values

and a uniform distribution. A key limitation of the K–S test is that it has low statistical

power, especially for small sample sizes (Razali and Wah 2011).
12One potential limitation of this approach is that it technically only works for independent tests (in

Anderson’s simulations it also works for positively dependent tests). Thus we may expect it to work
better in DGP 1, where the covariates are independent, as compared with the other DGPs that do have
a non-zero correlation structure.
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4.4 Test Size

We assess the size of these alternative balance tests in Figure 2, considering the four DGPs

described in Section 2. For each method, we consider variance estimators assuming ho-

moskedasticity and either heteroskedasticity-robust or cluster-robust variance estimators,

depending on whether the treatment is allocated to individuals or clusters. We consider

individually randomized designs (DGPs 1 and 3) and clustered designs (DGPs 2 and 4)

separately.

For DGP 1, all of the tests we consider have an empirical size equal to or below the

nominal size. For DGP 3 however, only the omnibus F -tests with randomization infer-

ence and the minimum q-values from pairwise t-tests with a variance estimator assuming

homoskedasticity have an empirical test size at or below the nominal size. We compare

their statistical power in the next section. By contrast, minimum q-values with a HC1

variance estimator and both versions of the Kolmogorov–Smirnov test have incorrect sizes,

over-rejecting the null hypothesis of balance.

In DGPs that mimic a clustered RCT (DGPs 2 and 4), empirical size is equal to or

below the nominal size only for the omnibus F -tests with randomization-based inference

and minimum q-values from pairwise t-tests with cluster-robust variance estimators. We

compare the statistical power of these tests in the next section. By contrast, minimum

q-values with a variance estimator assuming homoskedasticity and both versions of the

Kolmogorov–Smirnov tests tend to over-reject the null hypothesis.

These results are confirmed when varying both sample size and the number of co-

variates (Appendix Tables A.6 and A.7). In all DGPs, minimum q-values appear to be

conservative for high significance thresholds, indicating the tests tend to generate fewer

type I errors than expected. This is not an issue per se, but it may indicate that a more

powerful test could be designed (Fisher and Robbins 2019).
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Figure 2
Size of Omnibus Tests of Joint Orthogonality Using Randomization Inference,

Kolmogorov–Smirnov Tests, and Minimum q-values
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(a) DGP 1: 50 independent covariates ∼N(0,1)
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(b) DGP 2: clustered design

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
p-value

Cumulative distribution

(c) DGP 3: Garbiras-Díaz and Montenegro (2022)
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(d) DGP 4: Auriol et al. (2020)

Notes: Each plot shows the cumulative distribution of p-values/minimum q-values for one data gener-
ating process (DGP), based on 500 simulated datasets. DGP 1 has 500 observations, 50 independent
variables that are normally distributed ∼N(0,1), and an independent treatment randomly assigned to
half of observations. DGP 2 has 500 observations split in 100 clusters of equal size, with 50 variables
that are normally distributed and correlated within clusters (average ICC = 0.2), and an independent
treatment randomly assigned to half of the clusters. Garbiras-Díaz and Montenegro (2022) includes 698
municipalities in Colombia, which we randomly re-assign to a “placebo” treatment group or a control
group; the tests use 33 baseline covariates. Auriol et al. (2020) includes 1,016 observations split into 148
clusters, which we randomly re-assign to two “placebo” treatment arms and a control group; the tests use
10 baseline covariates and compare observations in one treatment group and the control group. Figures
A.6 and A.7 show how test size varies with the number of covariates and sample size for DGP 1 and DGP
2 respectively.
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4.5 Statistical Power

We assess the power of the balance tests in Figure 3 for DGP 1 and Figure 4 for DGP

2. We focus on balance tests that have correct sizes to avoid cluttering figures with

misleading information.

For DGP 1, which assumes normally distributed variables and no clustering, we find

that minimum q-values offer the best statistical power when only one variable is imbal-

anced, while the power of omnibus F -tests of joint orthogonality with randomization

inference is intermediate.13 Omnibus F -tests of joint orthogonality with randomization

inference have higher power than minimum q-values when a larger number of imbalances

that each have a smaller magnitude are considered. This suggests that the two approaches

might be complementary in individually randomized RCTs.

With DGP 2, we find that omnibus F -tests of joint orthogonality using randomization

inference and cluster-robust standard errors have the highest power, while minimum q-

values from pairwise t-tests with cluster-robust variance estimators largely fail to detect

imbalance. The results are similar when we vary sample size and the number of covariates

(Figures A.8 and A.9 in the Appendix). For clustered RCTs, we conclude that omnibus F -

tests of joint orthogonality with randomization inference are a valid tool to assess balance,

achieving the correct test size and higher statistical power than other approaches.

13We do not show the results of Kolmogorov-Smirnov tests and minimum q-values with a HC1 variance
estimator as these approaches have incorrect size in DGP 3. Figure A.8 shows that the statistical power
of minimum q-values with a HC1 variance estimator is similar to that of the minimum q-values with a
variance estimator assuming homoskedasticity. The statistical power of Kolmogorov-Smirnov tests is low.
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Figure 3
Power of Omnibus Tests of Joint Orthogonality for DGP 1 Using

Randomization Inference, Kolmogorov–Smirnov Tests, and Minimum q-values
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD
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(c) 20% imbalanced variables, 0.15 SD
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Notes: The figures show the results of simulations with a data generating process creating 50 independent variables that are normally distributed ∼N(0,1) and an
independent treatment randomly assigned to half of observations. Imbalances are then created for a subset of the n variables. In Panel (a), one variable is made
imbalanced by adding 0.25 to treated observations. In Panel (b), 10% of variables are made imbalanced by adding 0.2 to treated observations. In Panel (c), 20%
of variables are made imbalanced by adding 0.15 to treated observations. In Panel (d) 50% of variables are imbalanced, by adding 0.1 to treated observations. To
produce each figure, a total of 100 simulated datasets of N observations are generated, for each N ∈ {200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}.
For each method, the light dots show the N -specific share of p-values or minimum q-values below 0.10, and the lines show fractional-polynomial predictions for
N ∈ [200, 5000]. Figure A.8 shows how the power of the tests varies with the number of covariates and sample size. Results from minimum q-values with HC1
variance estimator and Kolmogorov-Smirnov tests are hidden as these approaches have incorrect test size (see Figure 2).
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Figure 4
Power of Omnibus Tests of Joint Orthogonality for DGP 2

Using Randomization Inference, Kolmogorov–Smirnov Tests, and Minimum q-values
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD
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(c) 20% imbalanced variables, 0.15 SD

0.0

0.2

0.4

0.6

0.8

1.0

0 1,000 2,000 3,000 4,000 5,000
N (# of observations)

Power (Share of Rejections)

(d) 50% imbalanced variables, 0.10 SD

Notes: The figures show the results of simulations with a data generating process with N observations (with N ∈ {200, 500, 1000, 2000, 5000}) that are split into
100 clusters of equal size and 50 variables that are normally distributed and correlated within clusters (with an average ICC of 0.2). An independent treatment
is equal to one in half of the clusters and zero otherwise. Imbalances are then created for a random subset of the n variables. In Panel (a), one variable is
imbalanced, by adding 0.25 to treated observations. In Panel (b), 10% of variables are imbalanced, by adding 0.2 to treated observations. In Panel (c), 20% of
variables are imbalanced, by adding 0.15 to treated observations. In Panel (d), 50% of variables are imbalanced, by adding 0.1 to treated observations. For each
N , a total of 100 simulated datasets of N observations are generated. For each method, the light dots show the N -specific share of p-values or minimum q-values
below 0.10, and the lines show fractional-polynomial predictions for N ∈ [200, 5000]. Figure A.9 shows how the power of the tests varies with the number of
covariates and sample size. Results from minimum q-values with a variance estimator assuming homoskedasticity and Kolmogorov-Smirnov tests are hidden as
these approaches have incorrect test size (see Figure 2).
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5 Multiple treatments and cross-randomization

Many randomized experiments involve more than one treatment, and thus more than two

study arms. Out of the 69 RCTs that we identified in our literature review, 27 (39%)

have more than one treatment. For these studies, we can examine balance between each

treatment and the control group. That is the best course of action if we are concerned

about the Leamer (1983) problem of unlucky random assignments. In that case, omnibus

F -tests of joint orthogonality using randomization inference are the optimal approach.

For assessing the Heckman, Pinto, and Shaikh (2024) problem of violations of the

randomization protocol, however, it is necessary to look for problems with overall balance.

This means that we need to run combined omnibus tests of joint orthogonality across

all study arms. Linear regression cannot handle this, but it is possible to implement

a comparable test using multivariate analysis of variance and covariance (MANOVA)

or multinomial logit with sampling-based or randomization inference. The minimum q-

value approach and other multiple-hypotheses adjustments can also be easily adapted by

considering the p-values from pairwise t-tests for each baseline covariate and each possible

comparison between treatment arms. We consider individually randomized designs (DGPs

1 and 3) and clustered designs (DGPs 2 and 4) separately.

For the individually randomized designs in DGPs 1 and 3, we show in Figure A.10

that all approaches have their empirical size equal or below the nominal size, except the

multinomial logit with sampling-based inference, which over-rejects the null hypothesis.14

We therefore omit this approach in power tests. Of the four remaining tests, the minimum

q-value has the best statistical power to detect one large imbalance, while MANOVA and

the multinomial logit with randomization inference have higher statistical power to detect

multiple small imbalances.

For DGPs 2 and 4, which are clustered designs, only MANOVA and multinomial

logit with randomization inference have the correct test size, while minimum q-values are

again conservative, under-rejecting the null (Figure A.10). We focus on these approaches
14The multinomial logit can fail to converge when the number of observations is low compared to the

number of covariates (Figure A.13).
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in power tests and find that multinomial logit with randomization inference is, by far,

the approach that has the best statistical power to detect single large or multiple small

imbalances. We therefore recommend using this approach for clustered designs with

multiple treatments. It is important to bear in mind, however, that this test is not

high-powered: large sample sizes are needed to detect imbalances.

6 Revisiting existing papers

In this section, we reassess the balance of two RCTs whose results were recently published

in top five journals.

6.1 Garbiras et al. (2022)

To assess balance, Garbiras-Díaz and Montenegro (2022) report the results of pairwise

t-tests, considering 33 baseline covariates (e.g. statistics on past reporting of irregulari-

ties, socioeconomic covariates, political covariates, and region dummies). They use “vote

counting” to conclude that municipalities are well balanced across treatment arms, report-

ing that “Only 16 differences in means out of 264 comparisons in Table A2 are statistically

significant at a 10 percent level or less.” The authors do not report the results of omnibus

tests of joint orthogonality.

In Table 1, we report the results of the different tests of joint orthogonality discussed

in our paper. With sampling based inference and a heteroskedasticity-robust variance

estimator, we find that two out of five tests are statistically significant at the 10% level.

Two other p-values are just above 0.1, which could raise concerns. However, these results

may be misleading: Section 3.2 concluded that such omnibus F -tests tend to over-reject

the null hypothesis that groups have equal means. Indeed, if we use the randomization

inference procedure that performs best in our simulations, we find that the p-values of

omnibus F -tests of joint orthogonality are all well above 0.1. These results are consistent

with our conclusion that these tests have correct test size when treatment is assigned at
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the individual level. We reach the same conclusion using minimum q-values.15

We also find that the control and treatment arms are well balanced when considering

the multiple treatment arms together using MANOVA with sampling-based inference (p-

value = 0.41), MANOVA with randomization inference (p-value = 0.41), multinomial logit

with randomization inference (p-value = 0.48), and the minimum sharpened q-value from

pairwise t-tests (minimum q-value = 1).

15All p-values of Kolmogorov-Smirnov tests are also above 0.1. However, we refrain from interpreting
these results given the poor size and statistical power of this test.
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Table 1
Replication of Existing Papers

F -test p-value Min. K–S
Inference = SI SI RI q-value p-value

HC1/Cluster H0 HC1/Cluster HC1/Cluster HC1/Cluster

(1) (2) (3) (4) (5)
Panel A: Replication of Garbiras-Díaz and Montenegro (2022)

Any treatment vs. Control 0.088 0.287 0.278 1.000 0.737
Information vs. Control 0.155 0.366 0.562 0.413 0.595
Call to actions vs. Control 0.065 0.417 0.446 1.000 0.643
Info+call to action vs. Control 0.126 0.404 0.528 1.000 0.105
Any letter vs. No letter 0.428 0.631 0.664 1.000 0.349

Panel B: Replication of Auriol et al. (2020)
Insurance vs. all other arms 0.988 0.967 0.996 1.000 0.005
Insurance info vs. all other arms 0.079 0.070 0.202 0.868 0.891
No insurance vs. all other arms 0.068 0.055 0.186 1.000 0.811

Notes: This table presents the results of different balance tests using the datasets from Garbiras-Díaz and Montenegro (2022) and Auriol et al. (2020). We rely
on the same set of baseline covariates and present the same sets of comparisons as used by the authors in their original papers. For Auriol et al. (2020), we
present the additional comparison “No insurance vs. all other arms”.
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6.2 Auriol et al. (2020)

In Table II of the main paper, Auriol et al. (2020) present a table of balance tests with

twelve preregistered covariates.16 They consider both pairwise t-tests and omnibus F -

tests of joint orthogonality.17 Out of the 24 p-values of pairwise t-tests, 4 are statistically

significant at the 10% threshold (17%). A researcher using simple “vote counting” would

conclude that the study arms are imbalanced. However, Section 3.1 showed that “vote

counting” should be avoided as it leads to over-rejections of the null hypothesis.

In Table 1, we present the results of different joint tests of balance. With sampling-

based inference, two out of three omnibus F -tests of joint orthogonality are significant at

the 10% level, both with a cluster-robust variance estimator and with a variance estimator

assuming homoskedasiticty. Researchers using these tests may wrongly conclude that the

RCT has a problem of imbalance. However, when we instead use randomization inference,

all p-values are above 0.1. We obtain a similar conclusion with minimum q-values. Overall,

these additional tests suggest there is no balance issue in the Auriol et al. (2020) RCT,

contrary to the conclusions of conventional sampling-based inference.18

We also conclude that the control and treatment arms are well balanced when consid-

ering the multiple treatment arms together using multinomial logit with randomization

inference (p-value = 0.28).
16The covariates are age, gender, total monthly income, a dummy of the employment status, three

indicator variables reflecting ethnic group membership (Akan, Ewe, or Ga), and indicators for daily
church attendance, praying multiple times per day, attending the revival week, and being recruited in
the second wave.

17Pairwise t-tests are estimated for the twelve baseline covariates and two types of comparison: the
“Insurance” treatment arm versus the “Insurance Information” treatment arm, and the “Information
insurance” treatment arm versus the “No Insurance” treatment arm. For the two omnibus F -tests of joint
orthogonality, the authors consider slightly different comparison groups, as the “Insurance” treatment
arm is compared to the two other groups together in the first F -test, and the “Insurance Information”
treatment arm is compared to the two other groups together in the second test. The F -tests are also
estimated using a reduced list of baseline covariates, dropping the dummy variables identifying revival
weeks and the second wave. We are able to exactly replicate the balance test results presented by the
authors for both the pairwise t-tests and omnibus F -tests of joint orthogonality. In our analysis, we
consider the same comparisons and variables as the authors used in their F -tests of joint orthogonality.

18We refrain from interpreting the results of Kolmogorov–Smirnov tests, which were shown to have
poor test size and statistical power in Section 4.
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7 Conclusion

The use of balance tests in randomized experiments remains controversial. They can be

powerful tools to demonstrate that randomized experiments were actually conducted as

designed and did not lead to study arm allocations that may yield misleading estimates.

However, some statisticians argue that they are unhelpful, falsely implying problems where

there are none.

Our paper shows that this problem is even worse than previously recognized. The usual

method of testing for overall balance yields far too many rejections of the null hypothesis,

so that even experiments with no balance problems whatsoever appear to have serious

issues. We show that randomization inference-based omnibus balance tests perform much

better than the conventional approach using sampling-based inference. The latter has a

high probability of Type I error with a large number of covariates, while the former has

no such issue with test size, and it has high statistical power.

Future work on balance tests should explore how these tests should best be used in

practice. For example, what would happen if researchers abandoned all RCTs in which

(correctly implemented) omnibus balance tests show an overall balance problem? And in

particular, how does that vary with the true rate of randomization failures, and the bias

caused by imperfect compliance with randomization protocols? If the true null hypothesis

holds, and all RCTs were in fact correctly run, then throwing out studies imbalanced

treatment allocations could cause treatment effect estimates to be biased on average. But

if some experiments really are run incorrectly then throwing them out would reduce bias.

Which pattern dominates is an empirical question, and one that should be informed by

both careful simulations and engagement with the practitioners who actually implement

these experiments in the field.
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Online Appendix

(e) Pairwise t-tests, OLS with HC1 variance esti-
mator (DGP 1)

(f) Pairwise t-tests, OLS with HO variance esti-
mator (DGP 1)

(g) Pairwise t-tests, OLS with cluster-robust vari-
ance estimator (DGP 2)

(h) Pairwise t-tests, OLS with HO variance esti-
mator (DGP 2)

Figure A.1
Pairwise t-tests for DGP 1 and DGP 2: distribution of share of p-values below 0.10.

Notes: Each figure is based on 500 simulated datasets and shows the cumulative distribution of the share
of p-values from pairwise t-test that are statistically significant at the 10% threshold. DGP 1 considers
a data generating process with 500 observations, 50 independent variables that are normally distributed
∼N(0,1), and an independent treatment randomly assigned to half of observations. DGP 2 considers a
data generating process with 500 observations split in 100 clusters of equal size, 50 variables that are
normally distributed and correlated within clusters (average coefficient of intra-cluster correlation = 0.2),
and an independent treatment randomly assigned to half of the clusters. For each DGP, 500 datasets
are generated, and for each dataset, we estimate the p-values of the 50 pairwise t-tests and calculate the
share of p-values that are below 0.1. The four figures shows the distribution of these shares for DGPs 1
and 2 and for heteroskedasticity-robust and cluster-robust variance estimators as well as for a variance
estimator assuming homoskedasticity.
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Figure A.2
Size of Balance Tests Using FWER and FDR Multiple-Hypothesis Testing Adjustments
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(a) DGP 1: 50 independent covariates ∼ N(0,1)
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(b) DGP 2: clustered design
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(c) DGP 3: data from Garbiras-Díaz and Montenegro
(2022)
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(d) DGP 4: data from Auriol et al. (2020)

Notes: Each figure shows the cumulative distribution of minimum p-values or minimum q-values from
the tests in question. Each figure focuses on one data generating process (DGP) and is based on 500
simulated datasets. DGP 1 considers a data generating process with 500 observations, 50 independent
variables that are normally distributed ∼N(0,1), and an independent treatment randomly assigned to half
of observations. DGP 2 considers a data generating process with 500 observations split in 100 clusters of
equal size, 50 variables that are normally distributed and correlated within clusters (average coefficient of
intra-cluster correlation = 0.2), and an independent treatment randomly assigned to half of the clusters.
The data from Garbiras-Díaz and Montenegro (2022) includes 698 municipalities in Colombia, which are
randomly re-assigned to a “placebo” treatment group or a control group; the tests use 33 baseline covariates
and compare observations in the treatment and control groups. The data from Auriol et al. (2020) includes
1,016 observations split into 148 clusters, with clusters randomly re-assigned to two “placebo” treatment
arms and a control group; the tests use 10 baseline covariates and compare observations in one treatment
group and the control group. Separately for each of the 500 simulated datasets and each method: (1) we
use the Stata command rwolf2 to estimate n FWER-adjusted p-values and record the minimum of the
p-values; and (2) we apply the method of Anderson (2008) to the n p-values from the pairwise t-tests to
obtain n sharpened q-values and record the minimum of these sharpened q-values. For each method, we
estimate the share of test statistics (out of 500) that are below a threshold t, for t ranging from 0.01 to
0.99 in steps of 0.01. We then use a fractional-polynomial prediction line to smooth the results.
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Figure A.3
Power of Balance Tests Using FWER and FDR Multiple-Hypothesis Testing Adjustments for DGP 1
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD

0.0

0.2

0.4

0.6

0.8

1.0

0 1,000 2,000 3,000 4,000 5,000
N # of observations

Power (Share of Rejections)

(c) 20% imbalanced variables, 0.15 SD
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Notes: The figures show the results of simulations with a data generating process creating 50 independent variables that are normally distributed ∼N(0,1) and an
independent treatment randomly assigned to half of observations. Imbalances are then created for a subset of the n variables. In Panel (a), one variable is made
imbalanced by adding 0.25 to treated observations. In Panel (b), 10% of variables are made imbalanced by adding 0.2 to treated observations. In Panel (c), 20%
of variables are made imbalanced by adding 0.15 to treated observations. In Panel (d) 50% of variables are imbalanced, by adding 0.1 to treated observations. To
produce each figure, a total of 100 simulated datasets of N observations are generated, for each N ∈ {200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}.
For each method, each N , and each of the 100 simulated datasets, (1) we use the Stata command rwolf2 to estimate n FWER-adjusted p-values and record the
minimum of the p-values; and (2) we apply the method of Anderson (2008) to the n p-values from the pairwise t-tests to obtain n sharpened q-values and record
the minimum of these sharpened q-values. For each N and each method, the light dots on each figure show the share of test statistics below 0.10. For each
method, fractional-polynomial prediction lines are used to predict the power of tests for N ∈ [200, 5000]. Figure A.8 shows how the power of the tests varies with
the number of covariates and sample size.
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Figure A.4
Size of Omnibus Tests of Joint Orthogonality for DGP 1 Using Sampling-based Inference
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(a) F -test, OLS with HC1 variance estimator
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(b) F -test, OLS with HC2 variance estimator
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(c) F -test, OLS with HC3 variance estimator
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(d) F -test, OLS with HO variance estimator
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(e) Chi2-test, Logit with HO variance estimator
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(f) Chi2-test, Probit with HO variance estimator
Notes: The figures show the results of simulations with a data generating process creating n independent
variables that are normally distributed ∼N(0,1) (with n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}) and an
independent treatment randomly assigned to half of observations. Simulated datasets of N observations
are generated (with N ∈ {200, 500, 1000, 2000, 5000}). Each figure focuses on one type of balance test
and is constructed as follows. For each combination of n and N , 500 simulated datasets are created and
the light dots show the share of tests’ p-values below 0.10. For each N , fractional-polynomial prediction
lines are then used to predict the size of tests for n ∈ [10, 100].
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Figure A.5
Size of Omnibus Tests of Joint Orthogonality for DGP 2 Using Sampling-based Inference
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(a) F -test, OLS with cluster-robust variance esti-
mator
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(b) F -test, OLS with HO variance estimator
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(d) F -test, Probit
Notes: The figures show the results of simulations with a data generating process with N observations
(with N ∈ {200, 500, 1000, 2000, 5000}) that are split into 100 clusters of equal size, and n variables that
are normally distributed and correlated within clusters (with n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
and an average intra-cluster correlation coefficient of 0.2). An independent treatment is equal to one in
half of the clusters and zero otherwise. Each figure focuses on one type of balance test and is constructed
as follows. For each combination of n and N , 500 simulated datasets are created and the light dots show
the share of tests’ p-values below 0.10. For each N , fractional-polynomial prediction lines are used to
predict the size of tests for n ∈ [10, 100].
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Figure A.6
Size of Omnibus Tests of Joint Orthogonality for DGP 1 Using Randomization

Inference, Kolmogorov–Smirnov Tests, and Minimum q-values
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(a) F -test randomization inference, HO variance
estimator
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(b) F -test randomization inference, HC1 variance
estimator
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(c) q-values, HO variance estimator
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(d) q-values, HC1 variance estimator
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(e) Kolmogorov–Smirnov test, HO variance esti-
mator
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(f) Kolmogorov–Smirnov test, HC1 variance esti-
mator

Notes: The figures show the results of simulations with a data-generating process that creates n indepen-
dent variables that are normally distributed ∼N(0,1) (with n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}) and
an independent treatment randomly assigned to half of observations. Simulated datasets of N observa-
tions are generated (with N ∈ {200, 500, 1000, 2000, 5000}). For each combination of n and N , we create
500 simulated datasets and run pairwise t-tests for all n variables for each dataset. The Kolmogorov–
Smirnov tests are run on the p-values of the pairwise t-tests. The minimum q-value is the minimum
sharpened q-value obtained after applying the method of Anderson (2008) to the p-values from the pair-
wise t-tests. For each N , the light dots show the n-specific share of test statistics below 0.10 and the
lines show fractional-polynomial predictions for n ∈ [10, 100].
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Figure A.7
Size of Omnibus Tests of Joint Orthogonality for DGP 2 Using Randomization

Inference, Kolmogorov–Smirnov Tests, and Minimum q-values
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(a) F -test with randomization inference
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(b) F -test with clustered randomization inference
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(c) q-values, homoskedastic variance estimator
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(d) q-values, cluster-robust variance estimator
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(e) K–S test, homoskedastic variance estimator
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(f) K–S test, cluster-robust variance estimator
Notes: The figures show the results of simulations with a data-generating process with N observations
(with N ∈ {200, 500, 1000, 2000, 5000}) that are split into 100 clusters of equal size, and n variables that
are normally distributed and correlated within clusters (with n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
and an average intra-cluster correlation coefficient of 0.2). An independent treatment is equal to one in
half of the clusters and zero otherwise. For each combination of n and N , we create 500 simulated datasets
and run pairwise t-tests for all n variables. The Kolmogorov–Smirnov tests are run on the p-values of
the pairwise t-tests. The minimum q-value is the minimum sharpened q-value obtained after applying
the method of Anderson (2008) to the p-values from the pairwise t-tests. The light dots show the share
of p-values or minimum q-values below 0.10. For each N , fractional-polynomial prediction lines are used
to predict the size of tests for n ∈ [10, 100].
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Figure A.8
Power of Omnibus Tests of Joint Orthogonality for DGP 1 Using Randomization
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(f) K–S, 10% imbal. (0.20 SD)
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(g) RI, 20% imbal. (0.15 SD)
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(h) q-val., 20% imbal. (0.15 SD)
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(i) K–S, 20% imbal. (0.15 SD)
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(j) RI, 50% imbal. (0.10 SD)
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(k) q-val., 50% imbal. (0.10 SD)
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(l) K–S, 50% imbal. (0.10 SD)

Notes: The figures show the results of simulations with n ∈ {10, 25, 50, 100} independent ∼N(0,1) vari-
ables, and an independent treatment randomly assigned to half of observations. Imbalances are then
created for a random subset of the n variables. In Panels (a-c), one variable is made imbalanced by
adding 0.25 to treated observations. In Panels (d-f), 10% of variables are made imbalanced by adding 0.2
to treated observations. In Panels (g-i), 20% of variables are made imbalanced by adding 0.15 to treated
observations. In Panels (j-l), 50% of variables are made imbalanced by adding 0.1 to treated observations.
Each figure focuses on one method and one type of imbalance and is constructed as follows. For each
N ∈ {200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}, a total of 100 simulated datasets with
n baseline covariates and N observations are generated. We run pairwise t-tests for all n variables in
each dataset. The Kolmogorov–Smirnov tests are run on the p-values of pairwise t-tests. The minimum
q-value is the minimum sharpened q-value obtained from applying the method of Anderson (2008) to
the p-values from the pairwise t-tests. For each method and each n, the light dots show the N -specific
share of p-values or minimum q-values below 0.10, and the lines show fractional-polynomial predictions
for N ∈ [200, 5000].
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Figure A.9
Power of Omnibus Tests of Joint Orthogonality for DGP 2 Using Randomization

Inference, Kolmogorov–Smirnov Tests, and Minimum q-values
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Notes: The figures show the results of simulations with N ∈ {200, 500, 1000, 2000, 5000} observations split
into 100 clusters of equal size, and n ∈ 10, 25, 50, 100 normally distributed variables that are correlated
within clusters (with an average intra-class correlation of 0.2). An independent treatment is equal to one
in half of the clusters and zero otherwise. Imbalances are then created for a subset of the n variables. In
Panels (a-c), one variable is made imbalanced, by adding 0.25 to treated observations. In Panels (d-f),
10% of variables are made imbalanced, by adding 0.2 to treated observations. In Panels (g-i), 20% of
variables are made imbalanced, by adding 0.15 to treated observations. In Panels (j-l), 50% of variables
are made imbalanced, by adding 0.1 to treated observations. For each N , we generate a total of 100
simulated datasets of N observations and run pairwise t-tests for all n variables in each dataset. The
Kolmogorov–Smirnov tests are run on the p-values of the pairwise t-tests. The minimum q-value is the
minimum sharpened q-value obtained after applying the method of Anderson (2008) to the p-values from
the pairwise t-tests. For each method and each n, the light dots show the N -specific share of p-values or
minimum q-values below 0.10, and the lines show fractional-polynomial predictions for N ∈ [200, 5000].
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Figure A.10
Size of Omnibus Tests of Joint Orthogonality with Multiple Treatment Arms
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(a) DGP 1: 50 independent covariates ∼ N(0,1)
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(b) DGP 2: clustered design
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(c) DGP 3: data from Garbiras-Díaz and Mon-
tenegro (2022)
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(d) DGP 4: data from Auriol et al. (2020)

Notes: The figures show the cumulative distribution of p-values and minimum q-values from omnibus
tests of joint orthogonality, using sampling-based inference. Each figure focuses on one data generating
process (DGP) and is based on 500 simulated datasets. DGP 1 considers a data generating process
with 500 observations, 50 independent variables that are normally distributed ∼N(0,1), and a categorical
variable identifying four randomly-assigned treatment arms with one quarter of observations in each.
DGP 2 considers a data generating process with 500 observations split in 100 clusters of equal size, 20
variables that are normally distributed and correlated within clusters (average coefficient of intra-cluster
correlation = 0.2), and a categorical variable identifying four randomly-assigned treatment arms with
one quarter of observations in each. The data from Garbiras-Díaz and Montenegro (2022) includes 698
municipalities in Colombia, which are randomly re-assigned to four treatment arms; the tests use 33
baseline covariates. The data from Auriol et al. (2020) includes 1016 observations split in 148 clusters,
with clusters randomly re-assigned to two “placebo” treatment arms and a control group; tests use 10
baseline covariates. For each test, we estimate the proportion of p-values or minimum q-values (out
of 500) that are below a threshold t, for t ranging from 0.01 to 0.99 in steps of 0.01. We then use a
fractional-polynomial prediction line to smooth the results. Figures A.13 and A.14 show how test size
vary with the number of covariates and sample size for DGP 1 and DGP 2 respectively.
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Figure A.11
Power of Omnibus Tests of Joint Orthogonality for DGP 1, with Multiple Treatment
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD
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(c) 20% imbalanced variables, 0.15 SD
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(d) 50% imbalanced variables, 0.10 SD
Notes: The figures show the results of simulations with a data generating process creating 50 independent
variables that are normally distributed ∼N(0,1) and an independent treatment randomly assigned to half
of observations. Imbalances are then created for a subset of the n variables and two treatment arms. In
Panel (a), one variable is made imbalanced by adding 0.25 to treated observations. In Panel (b), 10% of
variables are made imbalanced by adding 0.2 to treated observations. In Panel (c), 20% of variables are
made imbalanced by adding 0.15 to treated observations. In Panel (d) 50% of variables are imbalanced,
by adding 0.1 to treated observations. To produce each figure, a total of 100 simulated datasets of N
observations are generated, for each N ∈ {200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}.
We run pairwise t-tests for all n variables for each dataset and all possible comparisons between treatment
arms. The minimum q-value is the minimum sharpened q-value obtained after applying the method
ofAnderson (2008) to the p-values from the pairwise t-tests. For each method, the light dots show the
N -specific share of p-values or minimum q-values below 0.10, and the lines show fractional-polynomial
predictions for N ∈ [200, 5000]. Results from multinomial logit with sampling-based inference are hidden
as this approach has incorrect test size.
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Figure A.12
Power of Omnibus Tests of Joint Orthogonality for DGP 2, with Multiple Treatment

Arms
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD
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(c) 20% imbalanced variables, 0.15 SD
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(d) 50% imbalanced variables, 0.10 SD
Notes: The figures show the results of simulations with a data generating process with N observations
(with N ∈ {200, 500, 1000, 2000, 5000}) that are split into 100 clusters of equal size and 20 variables
that are normally distributed and correlated within clusters (with an average intra-class correlation
coefficient of 0.2). An independent treatment is equal to one in half of the clusters and zero otherwise.
Imbalances are then created for a random subset of the n variables and two treatment arms. In Panel
(a), one variable is imbalanced, by adding 0.25 to treated observations. In Panel (b), 10% of variables
are imbalanced, by adding 0.2 to treated observations. In Panel (c), 20% of variables are imbalanced,
by adding 0.15 to treated observations. In Panel (d), 50% of variables are imbalanced, by adding 0.1
to treated observations. To produce each figure, a total of 100 simulated datasets of N observations
are generated, for each N ∈ 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000. For each N and
each method, the light dots on each figure show the share of test statistics below 0.10. For each method,
fractional-polynomial prediction lines are used to predict the power of tests for N ∈ [200, 5000]. Results
from MANOVA and multinomial logit with sampling-based inference are hidden as these approaches have
incorrect test size.
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Figure A.13
Size of Omnibus Tests of Joint Orthogonality for DGP 1 with Multiple Treatment Arms,

as a Function of Sample Size
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(a) MANOVA, sampling-based inference
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(b) MANOVA, randomization inference
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(c) Mulitnomial logit, sampling-based inference
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(d) Mulitnomial logit, randomization inference
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Notes: The figures show the results of simulations with a data-generating process that creates n indepen-
dent variables that are normally distributed ∼N(0,1) (with n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}) and
a categorical variable identifying four randomly-assigned treatment arms with one quarter of observations
in each. Simulated datasets of N observations are generated (with N ∈ {200, 500, 1000, 2000, 5000}). For
each combination of n and N , we create 500 simulated datasets and run pairwise t-tests for all n variables
for each dataset. The minimum q-value is the minimum sharpened q-value obtained after applying the
method of Anderson (2008) to the p-values from the pairwise t-tests. For each N , the light dots show
the n-specific share of test statistics below 0.10 and the lines show fractional-polynomial predictions for
n ∈ [10, 100]. The multinomial logit did not converge for N=200.
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Figure A.14
Size of Omnibus Tests of Joint Orthogonality for DGP 2 with Multiple Treatment Arms,

as a Function of Sample Size
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(a) MANOVA, sampling-based inference
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(c) Mulitnomial logit, sampling-based inference
and cluster-robust variance estimator
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(d) Mulitnomial logit, randomization inference
and cluster-robust variance estimator
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Notes: The figures show the results of simulations with a data-generating process with N observations
(with N ∈ {200, 500, 1000, 2000, 5000}) that are split into 100 clusters of equal size, and n variables that
are normally distributed and correlated within clusters (with n ∈ {5, 10, 15, 20}, and an average intra-
cluster correlation coefficient of 0.2). A categorical variable identifies four randomly-assigned treatment
arms with one quarter of observations in each. For each combination of n and N , we create 500 simulated
datasets and run pairwise t-tests for all n variables. The minimum q-value is the minimum sharpened
q-value obtained after applying the method of Anderson (2008) to the p-values from the pairwise t-tests.
The light dots show the share of p-values or minimum q-values below 0.10. For each N , fractional-
polynomial prediction lines are used to predict the size of tests for n ∈ [5, 20].
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Table A.1
Literature Review of RCTs (2021-2023)

General Info. Pairwise/Groupwise test Joint Orthogonality F -test
Reference Bal. test N n T+C Design t F Nor.Diff Inf. J.F Model Inf. VE
De Janvry et al. (2023) Yes 2,854 11 2 Clu Yes No No SBI Yes OLS SBI clu.-rob
Ainsworth et al. (2023) Yes 2,629 12 2 Clu Yes No No SBI Yes OLS SBI clu.-rob
Guryan et al. (2023) Yes Exp. 1: 2,633 19 2 Ind Yes No No SBI Yes OLS SBI clu.-rob

Exp. 2: 2,710 - - -
Macchi (2023) Yes Exp 1: 511 25 2 Ind Yes No No SB& RI No - - -

Exp. 2: 238 - - -
Buchmann et al. (2023) Yes 26,408 18 3 Clu Yes No No SBI Yes OLS SBI clu.-rob
Brock and De Haas (2023) Yes 2,054 6 3 Ind No No No SBI Yes OLS SBI HO
Hardy and McCasland (2023) Yes 755 20 2 Ind Yes No No SBI Yes OLS SBI HO
Baseler (2023) Yes 497 20 2 Ind Yes No No SBI No - - -
Zárate (2023) Yes 6,147 23 3 Clu Yes No No SBI Yes ML SBI clu.-rob
Oh (2023) Yes 630 14 2 Ind Yes No No SBI No - - -
Chakravorty, Dar, and Emerick (2023) Yes 400 19 2 Clu No Yes No SBI No - - -
Afrouzi et al. (2023) No - - -
Alan, Corekcioglu, and Sutter (2023) Yes 1,988 19 2 Clu Yes No No SBI No - - -
Cullen, Dobbie, and Hoffman (2023) Yes 1,095 17 6 Ind No Yes No SBI No - - -
Gray-Lobe, Pathak, and Walters (2023) Yes 4,125 14 2 Ind Yes No No SBI No - - -
Banerjee et al. (2023b) Yes 7,511 42 2 Clu Yes No No SBI No - - -
Battaglia, Gulesci, and Madestam (2023) Yes 2,717 31 2 Clu Yes No Yes SBI & RI No - - -
Alesina, Miano, and Stantcheva (2023) Yes 22,506 8 3 Ind No No No SBI No - - -
Jack et al. (2023) Yes 1,840 26 6 Clu No Yes No SBI No - - -
Christensen and Timmins (2023) Yes 18,045 3 2 Clu No Yes No SBI No - - -
Beaman et al. (2023) Yes 6,807 9 3 Clu Yes No No SBI Yes OLS SBI clu.-rob
Tungodden and Willén (2023) No - - - - - - - - - - - -
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General Info. Pairwise/Groupwise test Joint Orthogonality F -test
Reference Bal. test N n T+C Design t F Nor.Diff Inf. J.F Model Inf. VE
Muralidharan, Niehaus, and Sukhtankar (2023) No - - -
Adhvaryu, Kala, and Nyshadham (2023) Yes 1,866 9 4 Clu Yes No No SBI No - - -
Cortés et al. (2023) No - - - - - - - - - - - -
Muralidharan, Niehaus, and Sukhtankar (2023) No - - -
Banerjee et al. (2023a) Yes 1,082 9 4 Clu Yes No No SBI No - - -
Bellemare et al. (2023) Yes 2,021 15 4 Ind Yes No No SBI No - - -
Dhar, Jain, and Jayachandran (2022) Yes 14,809 15 2 Clu Yes No Yes SBI Yes OLS SBI clu.-rob
Garbiras-Díaz and Montenegro (2022) Yes 698 33 7 Ind Yes No No SBI & RI No - - -
Aydin (2022) Yes 45,307 5 2 Ind No No No SBI Yes OLS SBI clu.-rob
Hussam et al. (2022b) Yes 754 27 3 Ind Yes No No No Yes OLS SBI clu.-rob
Casaburi and Reed (2022) Yes 1,079 12 2 Clu Yes No No SBI No - - -
Wheeler et al. (2022) Yes 1,638 11 2 Clu No Yes Yes SBI No - - -
Chen, Persson, and Polyakova (2022) Yes 743 17 2 Ind Yes No No SBI No - - -
Hussam et al. (2022a) Yes 2,887 32 8 Clu No Yes No SBI No - - -
Lopez, Sautmann, and Schaner (2022) Yes 2,055 27 3 Clu No Yes No SBI No - - -
Stephens Jr and Toohey (2022) Yes 12,562 11 2 Ind Yes No No No No - - -
Angrist, Autor, and Pallais (2022) Yes 8,190 15 2 Ind Yes Yes No SBI No - - -
Meghir et al. (2022) No - - - - - - - - - - - -
Allcott et al. (2022) Yes 1,177 14 2 Ind Yes Yes No SBI Yes OLS SBI HO
Carrera et al. (2022) Yes 1,248 8 2 Ind Yes No No SBI No - - -
Byrne, Martin, and Nah (2022) No - - -
Cai and Wang (2022) Yes 1,251 15 2 Clu Yes No No SBI No - - -
Arteaga et al. (2022) Yes 2,050 5 3 Ind No Yes No SBI No - - -
Carlana, La Ferrara, and Pinotti (2022) Yes 1,217 7 2 Clu Yes No Yes SBI No - - -
Fehr, Fink, and Jack (2022) Yes 5,842 10 2 Ind Yes Yes No SBI No - - -
Cullen and Perez-Truglia (2022) Yes 2,060 7 4 Clu Yes No No SBI No - - -
Levy (2021) Yes 37,494 21 3 Ind No No No SBI Yes OLS SBI -
Lowe (2021) Yes 800 11 2 Clu Yes No No SBI No - - -
Brune, Chyn, and Kerwin (2021) Yes 870 15 2 Ind Yes No No SBI Yes OLS SBI HC1
Leaver et al. (2021) Yes 242 4 2 Ind Yes No Yes RI No - - -
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General Info. Pairwise/Groupwise test Joint Orthogonality F-test
Reference Bal. test N n T+C Design t F Nor.Diff Inf. J.F Model Inf. VE
McKenzie and Puerto (2021) Yes 3,537 14 3 Clu Yes No No SBI Yes OLS SBI clu.-rob
Mohanan et al. (2021) Yes 135 8 3 Clu No Yes No SBI No - - -
Muralidharan et al. (2021) Yes 548 33 2 Clu Yes Yes No SBI Yes OLS SBI clu.-rob
Angrist, Caldwell, and Hall (2021) Yes 1,031 11 3 Ind Yes No No SBI Yes ML SBI clu.-rob
Carter, Laajaj, and Yang (2021) Yes 514 4 2 Ind No Yes No SBI No - - -
Dal Bó et al. (2021) Yes 176 8 2 Clu Yes No No SBI No - - -
Bessone et al. (2021) Yes 452 19 6 Ind Yes No No SBI Yes OLS SBI HO
Dahl, Kotsadam, and Rooth (2021) Yes 781 9 2 Clu No No No No Yes OLS SBI HO
Dube et al. (2021) Yes 504 17 3 Clu Yes No No No Yes ML SBI clu.-rob
Abebe et al. (2021) Yes 3,049 33 3 Clu Yes Yes No SBI Yes OLS SBI -
Angelucci and Bennett (2021) Yes 303 24 2 Clu Yes No No SBI Yes OLS SBI HO
Fowlie et al. (2021) Yes 71,017 5 5 Clu Yes No No SBI No - - -
Doerr and Necker (2021) Yes 2,543 1 7 Clu No Yes No SBI No - - -
Bandiera et al. (2021) Yes 587 24 4 Clu Yes Yes No SBI RI No - - -
Alan et al. (2021) Yes 7,487 36 2 Clu Yes No No SBI No - - -
Bergman (2021) Yes 306 12 2 Ind Yes No No SBI No - - -
Beaman et al. (2021) Yes 14,300 12 4 Clu No Yes No SBI No - - -
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